Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(15): 4283-4294, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35509460

RESUMO

The triggered self-assembly of surfactants into organized layers at aqueous interfaces is important for creating adaptive nanosystems and understanding selective ion extraction. While these transformations require molecular recognition, the underlying driving forces are modified by the local environment in ways that are not well understood. Herein, we investigate the role of ion binding and ion hydration using cyanosurf, which is composed of the cyanostar macrocycle, and its binding to anions that are either size-matched or mis-matched and either weakly or highly hydrated. We utilize the supra-amphiphile concept where anion binding converts cyanosurf into a charged and amphiphilic complex triggering its self-organization into monolayers at the air-water interface. Initially, cyanosurf forms aggregates at the surface of a pure water solution. When the weakly hydrated and size-matched hexafluorophosphate (PF6 -) and perchlorate (ClO4 -) anions are added, the macrocycles form distinct monolayer architectures. Surface-pressure isotherms reveal significant reorganization of the surface-active molecules upon anion binding while infrared reflection absorption spectroscopy show the ion-bound complexes are well ordered at the interface. Vibrational sum frequency generation spectroscopy shows the water molecules in the interfacial region are highly ordered in response to the charged monolayer of cyanosurf complexes. Consistent with the importance of recognition, we find the smaller mis-matched chloride does not trigger the transformation. However, the size-matched phosphate (H2PO4 -) also does not trigger monolayer formation indicating hydration inhibits its interfacial binding. These studies reveal how anion-selective recognition and hydration both control the binding and thus the switching of a responsive molecular interface.

2.
J Phys Chem A ; 124(49): 10171-10180, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33253571

RESUMO

There is a critical need for receptors that are designed to enhance anion binding selectivity at aqueous interfaces in light of the growing importance of separation technologies for environmental sustainability. Here, we conducted the first study of anion binding selectivity across a series of prevalent inorganic oxoanions and halides that bind to a positively charged guanidinium receptor anchored to an aqueous interface. Vibrational sum frequency generation spectroscopy and infrared reflection absorption spectroscopy studies at the water-air interface reveal that the guanidinium receptor binds to an oxoanion series in the order SO42- > H2PO4- > NO3- > NO2- while harboring very weak interactions with the halides in the order I- > Cl- ≈ Br-. In spite of large dehydration penalties for sulfate and phosphate, the more weakly hydrated guanidinium receptor was selective for these oxoanions in contradiction to predictions made from ion partitioning alone, like the Hofmeister series and Collins's rules. Instead, sulfate binding is likely favored by the suppression of dielectric screening at the interface that consequently boosts Coulombic attractions, and thus helps offset the costs of anion dehydration. Geometric factors also favor the oxoanions. Furthermore, the unique placement of iodide in our halide series ahead of the stronger hydrogen-bond acceptors (Cl-, Br-) suggests that the binding interaction also depends upon single-ion surface partitioning from bulk water to the interface. Knowledge of the anion binding preferences displayed by a guanidinium receptor sheds light on the receptor architectures needed within designer interfaces to control selectivity.

3.
J Phys Chem A ; 118(7): 1185-95, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24471690

RESUMO

The photodissociation dynamics of benzoyl chloride at 235 nm has been investigated and compared with that of 2-furoyl chloride. Atomic Cl and molecular HCl channels have been detected in benzoyl chloride by employing resonance-enhanced multiphoton ionization technique and time-of-flight mass spectrometry. Both the Cl fragments, Cl((2)PJ=3/2, relative quantum yield 0.70 ± 0.15) and Cl*((2)PJ=1/2), show isotropic angular distribution and bimodal translational energy distributions. The predominant high kinetic energy channel contributes 72% to the C-Cl bond scission and arises from the S1 state having nπ* character of benzoyl chloride. However, the low-energy Cl and HCl channels originate from the ground electronic state. The most plausible mechanism of HCl formation is proposed based on molecular orbital calculations. In contrast to benzoyl chloride, the HCl channel is not observed in 2-furoyl chloride on excitation at 235 nm, and this is attributed to an energy constraint.


Assuntos
Benzoatos/química , Cloretos/química , Ácido Clorídrico/química , Fótons , Algoritmos , Anisotropia , Carbono/química , Furanos/química , Cinética , Lasers , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular
4.
J Phys Chem A ; 117(12): 2415-26, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23444923

RESUMO

The photodissociation dynamics of 1,2-cyclohexanedione (CHD), which exists in enolic form in gas phase, is studied using pulsed laser photolysis (LP)-laser induced fluorescence (LIF) "pump-and-probe" technique at room temperature. The nascent state distribution of the OH radical, formed after initial photoexcitation of the molecule to it is (π, π*) and Rydberg states, is determined. The initial (π, π*) and Rydberg states are prepared by excitation with the fourth harmonic output of Nd:YAG (266 nm)/KrF (248 nm) and ArF (193 nm) lasers, respectively. The ro-vibrational distribution of the nascent OH photofragment is measured in collision-free conditions using LIF. The OH fragments are formed in the vibrationally cold state at all the above wavelengths of excitation but differ in rotational state distributions. At 266 nm photolysis, the rotational population of OH shows a curvature in Boltzmann plot, which is fairly described by two types of Boltzmann-like distributions characterized by rotational temperatures of 3100 ± 100 and 900 ± 80 K. However, at 248 nm photolysis, the rotational distribution is described by a single rotational temperature of 950 ± 80 K. The spin-orbit and Λ-doublets ratios of OH fragments formed in the dissociation process are also measured. The average translational energy in the center-of-mass coordinate, partitioned into the photofragment pairs of the OH formation channels, is determined to be 12.5 ± 3.0, 12.7 ± 3.0, and 12.0 ± 3.0 kcal/mol at 266, 248, and 193 nm excitation, respectively. The energy partitioning into various degrees of freedom of products is interpreted with the help of different models, namely, statistical, impulsive, and hybrid models. To understand the nature of the dissociative potential energy surface involved in the OH formation channel, detailed ab initio calculations are performed using configuration interaction-singles (CIS) method. It is proposed that at 266 nm photolysis, the OH fragment is formed from two different excited state structures, one with a strong H bonding, similar to that in the ground state, and another without effective H bonding, whereas, at 248 nm photodissociation, it seems that the OH formation occurs mainly from the excited state, which lacks effective H-bonding. At 193 nm excitation, the initially prepared population in the Rydberg state crosses over to a nearby σ* repulsive state along the C-O bond, from where the dissociation takes place. The exit barrier for the OH dissociation channel is estimated to be 14 kcal/mol. The existence of dynamical constraint due to strong hydrogen bond in the ground state is effectively present in the dissociation process at 266 and somewhat deficient at 248 nm photolysis.

5.
J Phys Chem A ; 116(44): 10656-67, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23078350

RESUMO

The photodissociation dynamics of halogen-substituted thiophenes, namely, 2-chlorothiophene and 2-bromo-5-chlorothiophene, has been studied in a supersonic molecular beam around 235 nm, using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique, by detecting the nascent state of the primary halogen atoms. A single laser has been used for excitation of halothiophenes, as well as for the REMPI detection of photoproducts, namely, chlorine and bromine atoms, in their spin-orbit states X((2)P(3/2)) and X*((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, ß, and the spin-orbit branching ratio, for chlorine and bromine atom elimination channels. State-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment anisotropies, ß(ι). The TOF profiles for Cl, Cl*, Br, and Br* are found to be independent of laser polarization; i.e., the ß is well characterized by a value of ~0.0, within the experimental uncertainties. For 2-chlorothiophene, we have observed two components for the Cl and only one component for the Cl* atom elimination channel in the translational energy distributions. The average translational energies for the fast and the slow components of the Cl channel are 3.0 ± 1.0 and 1.0 ± 0.5 kcal/mol, respectively. For Cl*, the average translational energy is 3.5 ± 1.0 kcal/mol. For 2-bromo-5-chlorothiophene, we have observed only one component for Cl, Cl*, Br, and Br* in the translational energy distributions. The average translational energies for the Cl and Cl* channels are 3.5 ± 1.0 and 5.0 ± 1.0 kcal/mol, respectively, whereas the average translational energies for the Br and Br* channels are 2.0 ± 1.0 and 3.5 ± 1.0 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. The ΔH(f)(298) value for 2-chlorothiophene has been estimated theoretically to be 23.5 kcal/mol.


Assuntos
Halogênios/química , Processos Fotoquímicos , Tiofenos/química , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
6.
J Chem Phys ; 134(19): 194313, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21599065

RESUMO

The photodissociation dynamics of 3-bromo-1,1,1-trifluoro-2-propanol (BTFP) and 2-(bromomethyl) hexafluoro-2-propanol (BMHFP) have been studied at 234 nm, and the C-Br bond dissociation investigated using resonance-enhanced multiphoton ionization coupled with time-of-flight mass spectrometer (REMPI-TOFMS). Br formation is a primary process and occurs on a repulsive surface involving the C-Br bond of BTFP and BMHFP. Polarization dependent time-of-flight profiles were measured, and the translational energy distributions and recoil anisotropy parameters extracted using forward convolution fits. A strong polarization dependence of time-of-flight profiles suggest anisotropic distributions of the Br((2)P(3/2)) and Br((2)P(1/2)) fragments with anisotropy parameter, ß, of respectively 0.5 ± 0.2 and 1.2 ± 0.2 for BTFP, and 0.4 ± 0.1 and 1.0 ± 0.3 for BMHFP. The measured velocity distributions consist of a single velocity component. The average translational energies for the Br((2)P(3/2)) and Br((2)P(1/2)) channels are 9.2 ± 1.0 and 7.4 ± 0.9 kcal/mol for BTFP, and 15.4 ± 1.8 and 15.1 ± 2.0 kcal/mol for BMHFP. The relative quantum yields of Br((2)P(3/2)) and Br((2)P(1/2)), which are 0.70 ± 0.14 and 0.30 ± 0.06 in BTFP and 0.81 ± 0.16 and 0.19 ± 0.04 in BMHFP, indicate that the yield of the former is predominant. The measured anisotropy parameters for the Br((2)P(3/2)) and Br((2)P(1/2)) channels suggest that the former channel has almost equal contributions from both the parallel and the perpendicular transitions, whereas the latter channel has a significant contribution from a parallel transition. Non-adiabatic curve crossing plays an important role in the C-Br bond dissociation of both BTFP and BMHFP. The estimated curve crossing probabilities suggest a greater value in BTFP, which explains a greater observed value of the relative quantum yield of Br((2)P(1/2)) in this case.

7.
J Phys Chem A ; 115(9): 1538-46, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21322536

RESUMO

The photodissociation dynamics of fumaryl chloride (ClCO-CH═CH-COCl) has been studied in a supersonic molecular beam around 235 nm using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique by detecting the nascent state of the primary chlorine atom. A single laser has been used for excitation of fumaryl chloride and the REMPI detection of chlorine atoms in their spin-orbit states, Cl ((2)P(3/2)) and Cl* ((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, ß, and the spin-orbit branching ratio for chlorine atom elimination channels. To obtain these, measured polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment recoil anisotropies, ß(i). The TOF profiles for both Cl and Cl* are found to be independent of laser polarization; i.e., ß is well characterized by a value of 0.0, within the experimental uncertainties. Two components, namely, the fast and the slow, are observed in the translational energy distribution, P(E(T)), of Cl and Cl* atoms, and assigned to be formed from different potential energy surfaces. The average translational energies for the fast components of the Cl and Cl* channels are 14.9 ± 1.6 and 16.8 ± 1.6 kcal/mol, respectively. Similarly, for the slow components, the average translational energies of the Cl and Cl* channels are 3.4 ± 0.8 and 3.1 ± 0.8 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. Apart from the chlorine atom elimination channel, molecular hydrogen chloride (HCl) elimination is also observed in the photodissociation process. The HCl product has been detected, using a REMPI scheme in the region of 236-237 nm. The observation of the molecular HCl in the dissociation process highlights the importance of the relaxation process, in which the initially excited parent molecule relaxes to the ground state from where the molecular (HCl) elimination takes place.

8.
J Chem Phys ; 134(4): 044316, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280734

RESUMO

Photoexcitation of 2-bromo-2-nitropropane (BNP) at 248 and 193 nm generates OH, Br, and NO(2) among other products. The OH fragment is detected by laser-induced fluorescence spectroscopy, and its translational and internal state distributions (vibration, rotation, spin-orbit, and Λ-doubling components) are probed. At both 248 and 193 nm, the OH fragment is produced translationally hot with the energy of 10.8 and 17.2 kcal∕mol, respectively. It is produced vibrationally cold (v" = 0) at 248 nm, and excited (v" = 1) at 193 nm with a vibrational temperature of 1870 ± 150 K. It is also generated with rotational excitation, rotational populations of OH(v" = 0) being characterized by a temperature of 550 ± 50 and 925 ± 100 K at 248 and 193 nm excitation of BNP, respectively. The spin-orbit components of OH(X(2)Π) are not in equilibrium on excitation at 193 nm, but the Λ-doublets are almost in equilibrium, implying no preference for its π lobe with respect to the plane of rotation. The NO(2) product is produced electronically excited, as detected by measuring UV-visible fluorescence, at 193 nm and mostly in the ground electronic state at 248 nm. The Br product is detected employing resonance-enhanced multiphoton ionization with time-of-flight mass spectrometer for better understanding of the dynamics of dissociation. The forward convolution analysis of the experimental data has provided translational energy distributions and anisotropy parameters for both Br((2)P(3∕2)) and Br∗((2)P(1∕2)). The average translational energies for the Br and Br∗ channels are 5.0 ± 1.0 and 6.0 ± 1.5 kcal∕mol. No recoil anisotropies were observed for these products. Most plausible mechanisms of OH and Br formation are discussed based on both the experimental and the theoretical results. Results suggest that the electronically excited BNP molecules at 248 and 234 nm relax to the ground state, and subsequently dissociate to produce OH and Br through different channels. The mechanism of OH formation from BNP on excitation at 193 nm is also discussed.

9.
J Phys Chem A ; 114(47): 12369-77, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21058634

RESUMO

Cyclohexanone oxime (CHO) and cyclopentanone oxime (CPO) in the vapor phase undergo N-OH bond scission upon excitation at 193 nm to produce OH, which was detected state selectively employing laser-induced fluorescence. The measured energy distribution between fragments for both oximes suggests that in CHO the OH produced is mostly vibrationally cold, with moderate rotational excitation, whereas in CPO the OH fragment is also formed in v'' = 1 (~2%). The rotational population of OH (v'' = 0, J'') from CHO is characterized by a rotational temperature of 1440 ± 80 K, whereas the rotational populations of OH (v'' = 0, J'') and OH (v'' = 1, J'') from CPO are characterized by temperatures of 1360 ± 90 K and 930 ± 170 K, respectively. A high fraction of the available energy is partitioned to the relative translation of the fragments with f(T) values of 0.25 and 0.22 for CHO and CPO, respectively. In the case of CHO, the Λ-doublet states of the nascent OH radical are populated almost equally in lower rotational quantum levels N'', with a preference for Π(+) (A') states for higher N''. However, there is no preference for either of the two spin orbit states Π(3/2) and Π(1/2) of OH. The nascent OH product in CPO is equally distributed in both Λ-doublet states of Π(+) (A') and Π(-) (A'') for all N'', but has a preference for the Π(3/2) spin orbit state. Experimental work in combination with theoretical calculations suggests that both CHO and CPO molecules at 193 nm are excited to the S(2) state, which undergoes nonradiative relaxation to the T(2) state. Subsequently, molecules undergo the N-OH bond dissociation from the T(2) state with an exit barrier to produce OH (v'', J'').

10.
J Phys Chem A ; 114(16): 5271-8, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20373808

RESUMO

The photodissociation dynamics of phosphorus trichloride (PCl(3)) has been studied in a supersonic beam by resonance enhanced multiphoton ionization (REMPI), using time-of-flight (TOF) mass spectrometry. The study is focused on the nascent state of the primary chlorine atom, formed on excitation of the (n, sigma*) transition of the molecule around 235 nm. Dissociation of PCl(3) and the REMPI detection of chlorine atoms are performed, using the same laser around 235 nm. The photofragments, namely, Cl((2)P(3/2)) and Cl*((2)P(1/2)), are probed, using the 2+1 REMPI scheme in the 234-236 nm region. We have determined the photofragment speed distribution, the recoil anisotropy parameter beta, and the spin-orbit branching ratio for chlorine atom elimination channels. Polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment anisotropies. The anisotropy parameters for Cl and Cl* are characterized by values of 0.0 +/- 0.05 and 0.20 +/- 0.05, respectively. Two components, namely, the fast and the slow, are observed in the speed distribution (P(v)) of Cl and Cl* atoms, formed from different potential energy surfaces. The average translational energies for the Cl and Cl* channels for the fast component are 29.7 and 30.6 kcal/mol, respectively. Similarly, for the slow component, the average translational energies for the Cl and Cl* channels are 9.5 and 9.1 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of an impulsive model, for the fast component, and a statistical model, for the slow component. Apart from the chlorine atom elimination channel, molecular chlorine (Cl(2)) elimination is also observed in the photodissociation of PCl(3). The observation of the molecular chlorine in the dissociation process and the bimodal translational energy distribution of the chlorine atom clearly indicate the existence of a crossover mechanism from the initially prepared state to the ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...